Zebrafish dystrophin and utrophin genes: dissecting transcriptional expression during embryonic development.

نویسندگان

  • Daniel Lai
  • Chuan-Ching Lan
  • Ivone Un San Leong
  • Donald R Love
چکیده

Some genes can encode multiple overlapping transcripts, and this can result in challenges in identifying transcript-specific developmental expression profiles where tools such as RNA in situ hybrisations are inapplicable. Given this difficulty, we have undertaken a preliminary analysis of the developmental expression profile of selected transcripts of the dystrophin and utrophin genes of the zebrafish (Danio rerio) by targeting unique and common regions of each of these transcripts. The dystrophin and utrophin genes of zebrafish were identified by bioinformatic analysis and the dystrophin gene predictions were confirmed by transcript sequencing. These data enabled primer pairs to be designed in order to determine the expression profiles of unique, but overlapping transcripts, throughout embryonic development using quantitative real time reverse transcription PCR (qRT-PCR). The data indicated the early expression of the short carboxyl-terminal dystrophin transcript, with expression of the full length muscle transcript occurring during myogenesis. Importantly, a composite of these two profiles appeared to comprise the major transcriptional load of the zebrafish dystrophin gene. In contrast, utrophin gene expression was dominated by the full length transcript throughout embryogenesis. The approach described here provided a means by which a gene's transcriptional complexity can be deconvoluted to reveal transcriptional diversity during embryogenesis. This approach, however, required the identification of unique regions for transcript-specific targeting, and an appreciation of alternative splicing events that may compromise the design of primers for qRT-PCR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

EPSA1 and VPF genes expression during embryonic and larval development period of Beluga, Huso huso

Background: The Endothelial PAS domain-containing protein 1 (EPSA1) is the key transcriptional regulator of hypoxic response and Vascular Permeability Factor (VPF) is an important growth factor for vascular development and angiogenesis. OBJECTIVES: In the present study, the levels of the EPSA1 coding gene and VPF transcripts were evaluated during Larval development of Beluga, Huso huso. METHODS...

متن کامل

Repression-free utrophin-A 5’UTR variants

Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...

متن کامل

Molecular and functional analysis of the utrophin promoter.

Utrophin is a ubiquitously expressed cytoskeletal protein which is an important structural component of the mammalian neuromuscular junction. It shows extensive sequence similarity to dystrophin leading to postulation that utrophin may be able to compensate for the absence of dystrophin in Duchenne muscular dystrophy (DMD) patients. In order to study the transcriptional control of utrophin expr...

متن کامل

The role of basal and myogenic factors in the transcriptional activation of utrophin promoter A: implications for therapeutic up-regulation in Duchenne muscular dystrophy.

Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. Utrophin is the autosomal homologue of dystrophin. We previously demonstrated that overexpression of utrophin in the muscles of dystrophin-null transgenic mice completely prevented the phenotype arising from dystrophin deficiency. Two independentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 29 3  شماره 

صفحات  -

تاریخ انتشار 2012